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Investigation of the hydrodynamic stability of the plane front of a 
laminar flame was started in 1944 by L. D. Landau [1], who obtained 
the paradoxical result of absolute instability of the plane front in the 
linear approximation. In Landau's work, the laminar flame was rep- 
resented in the form of a surface of discontinuity of temperature, 
pressure, density, and velocity which propagated relative to the gas 
at a constant velocity not dependent on the curvature of the surface. 
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Fig. 1 

Thus, the result obtained by Landau should be applied to those rep- 
resentations of a flame front where the wavelengths are large as 
compared with its thickness. 

Curvatures of small wavelength influence the flame structure and 
change its velocity of propagation. The nature of this influence may 
vary according to the relationship between the thermal diffusivity 
and the diffusion coefficient limiting the chemical reaction rate 
(attention was called to this fact [2] even before the work of Landau). 
That is, if the thermal diffusivity exceeds the diffusion coefficient, 
then one might expect on the basis of physical considerations a 
decrease in the velocity of the flame in the convex sections and an 
increase in the concave ones, which would lead to stabilization of 
the flame. It is clear, however, that the Reynolds numbers for such 
small disturbances should be on the order of unity. 

These qualitative considerations have been developed quantitatively 
in a number of references [3-5]. These sources imply that within the 
framework of linearized theory, the critical Reynolds number cannot 
exceed 10-20. This contradicts the experimental data--stable laminar 
flames have been observed at Reynolds numbers up to 104-106 in 
some experiments [6-8]. The sohtion of this paradox lies apparently, 
on the one hand, in peculiarities of the propagation of a flame under 
conditions in which the surface of the flame grows; A. G. Istratov 
and V. B. Librovich showed that in this case, the critical Reynolds 
number increased many times [9]. On the other hand, nonlinear 
effects are possible which might stabilize a flame if the disturbances 
on the surface of the flame were sufficiently large. Moreover, when 
considering flames in tubes and other devices, it is necessary to take 
the stabilizing effect of the walls into account. 
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In this communication we shall present ideas on a possible non- 
linear effect which would ensure flame stabilization. Attention was 
directed to this effect for the first time in [10] and similar considera- 
tions were recently expressed by K. I. Shchelkin [11]. 

In Landau's theory, increases in disturbances in the propagation of 
a laminar flame occur as a result of non-one-dimensional motion of 
the gas connected with a pressure drop at the curved surface of the 
flame. We shall represent such an experiment theoretically. Suppose 
we shut off motion of the gas. Then, the hydrodynamic development 
of the disturbances would cease, the curved flame front propagating 
through the motionless gas at a constant normal velocity would begin 
to change shape, the convex sections of the flame would grow and the 
concave ones would diminish. Ultimately, corner points would 
appear in place of the convex sections. Figure 1 shows three suc- 
cessive positions of the flame front constructed by the Huygens method 
(circles with radius UHAt are drawn about the points in the front, 
where u H is the normal velocity of the flame, At is the time interval; 
then their envelope is drawn). Position 3 corresponds to the time 
of appearance of corner points on the flame. 

Due to the merging of two sections of the front, the velocity of 
propagation of the corner points which have formed will be greater 
than the normal velocity of the flame. This leads to a situation in 
which the disturbances on the surface of the flame begin to decrease, 
as noted in reference [10]. Let us consider in a semiquantitative 
manner the stationary disturbed state to which an examination of this 
effect would lead. Let a be the angle of inclination of the flame 
front at a corner point (Fig. 2). Then the velocity of propagation of 
the corner point is equal to UH/COS a. We have for the rate at which 
the amplitude of the disturbances decreases due to the high velocity 
of the corner points 

�9 d A  --1).  

It is assumed here that the velocity of the flame at the corner 
point ceases to be equal to the normal velocity. Actually, due to 
the sharp curvature of the front at a corner point, the velocity of 
the flame will vary, and a region similar to the tip of a Bunsen 
flame will appear at the corner point. By assuming constant velocity, 
we thus neglect its structure. 
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Now. we shall give the shape of a curved flame. Let us assume 
that the flame front consists of sections of parabolas (Fig. 2). On 
the basis of geometric consideraffons, for small c~ we have 

4.4 2Ak I ~ ) /k---- 2 ~ "  t g a = : = - ~ -  ~ T (2) 

Here, A is the amplitude, k the wavelength of the disturbance, 
and k the wave number. 

Therefore we rewrite (1) in the form 

2 
(~t )_~-- -~k 'u~A~.  (3) 

Thus, this effect of stabilization of a flame front by corner 
points is nonlinear and proportional to the square of the amplitude 

of the disturbance. This is clear because the effect (3) was not taken 
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into consideration in Landau's linearized theory in which the Huygem 
principle was retained on condition that the normal velocity of the 
flame remained constant, We shall now establish the connection 
between Landau's theory and the effect considered here, which 
will permit us to find the relationship between the wavelength and 
the amplitude of disturbances for a stationary curved flame front. 

The following relationship holds in the linear approximation: 

dA 
d t  ---~ ~ A ,  a~ > 0 , ( 4 )  

where co is the characteristic frequency of the problem. 
Considering (4) as the first term of the expansion of the derivative 

dA/dt in a series in powers of A, we write this expression with ac- 
curacy to the next term: 

dA 
d-T = oaa + • (5) 

Here x is a certain constant. We find from considerations of 
dimensionality that 

= ~ a k % ,  • = ~ ,k~u , , ,  ( 6 )  

where ~ and ~ are dimensionless constants.* 
It can be seen from (5) that if/a ,t 0, a disturbed front will not be 

agitated indefinitely, but will reach a stationary curved state with 
the amplitude 

A ,  = - -  D~/V,k. (7) 

One may evaluate ~ by comparing formulas (5) and (3): 

F = - -  21~2" ( 8 )  

This method of determining g is approximate, since all second- 
order terms in the equations are not taken into consideration con- 
sistently, However, this method apparently satisfactorily describes 
the principal stabilizing effect connected with the presence of corner 
points on the flame, To obtain an exact determination of #, it is 
necessary to solve the nonlinear problem of the motion of a gas when 
a curved flame is propagated, which still involves great difficulties. 

The ideas set forth here give the relationship between the wave- 
length and the amplitude of the disturbance, but they do not determine 
the wavelength itself on a stationary curved flame. An additional 
condition is essential for its determination. One may assume, for 
exampIe, that the wavelength corresponds to those initial disturbances 
whose rate of growth is maximum (refer to reference [2] in which the 
wavelength of a disturbance growing az a maximum rate is calculated), 

*L. D. Landau utilized the same procedure in the theory of the 

turbulence. Here, unlike the case of turbulence, the motion does aot 
come from a self-oscillating mode, but from a stationary mode. Thus, 
the expansion (5) contains quadratic terms which drop out in the theory 
of turbulence due to averaging over periods of time which are large 
compared with the period of oscillation of the amplitude [12]. 

We also call attention to the fact that corner points on a flame 
front lead to the formation of stagnant regions in combustion products. 
This can be seen from Fig. 3. in which gas streamlines close to a 
corner point are shown. Refraction of streamlines caused by thermal 
expansion of gas leads to a situation in which not a single streamline 
may fall within the region behind a corner point--thus this region 
should be filled by gas which is not moving relative to the Name front. 
It is easy to find the angle ~3 in this region: 

4Ak 
= 2 = ( t  - -  r)  - - - - - - -g -  (1 - -  r ) .  ( 9 )  

Here r is the ratio of the density of combustion products to the 
density of the cold gas. 

The action of viscosity, and also the turbulent diffusion of the tan- 
gential discontinuity forming behind a corner point, leads to a situa- 
tion in which a stagnant region exists only close to a corner point. A 
turbulent wake occurs behind a corner point at great distances from 
the flame front. 

REFERENCES 

1. L. D. Landau, "An approach to a theory of slow combustion," 
Zh. eksperim, i teor. fiz., 14, 6. !944. 

2. Ya. B. Zel'dovich, Theory of Combustion and Detonation of 
Gases [in Russian], Moscow-Leningrad, Izd-Vo. AN 8SSR. 1944. 

3. G. H. Markstein, "Experimental and theoretical studies of 
flame-front stability," L Aeronaut. Science, vol. 18, no. 3, 1951. 

4. G. H. Markstein (ed.), Nonsteady Flame Propagation, Pergamon 
Press, 1964. 

5. G. I. Barenblatt, Ya. B. Zel'dovich, and A. G. Istratov, 
"On the diffusive-thermal stability of a laminar flame," PriM. mekh. 
i tekh. fiz., no. 4. 1962. 

6. Ya. B. Zel'dovich arid A~ I. Rozlovskii, "Conditions for the 
occurrence of instability of normal combustion." DAN SSSR. vol. 87, 
no. 4, 194% 

7. Kh. A. Rakipova, Ya. K. Troshin, and K. L Shchelkin, 
"Measuring flame velocities in acetylene-oxygen mixtures," Zh. 
tekh. fiz., vol. 17, no. 12, 1947. 

8. Ya. K. Troshin and K. I. Shchelkin, "The structure of 
spherical flame fronts and instability of combustion," Izv. AN SSSR. 
OTN, no. 9, 1955. 

9. A. G. Istratov and V. B. Librovich, "The stability of propaga- 
tion of a spherical flame," PMTF [Journal of Applied Mechanics and 

Technical Physics], no. 1, 1966. 
10. R. E. Petersen and H. W. Emmons, "The stability of laminar 

flames," Phys. Fluids, vol. 4, no. 4, 1961. 
11. K. L Shchelkin, "Instability of combustion and detonation 

of gases." Usp. fiz. nauk. voL 87, no. 2, 1965. 
12. L. D. Landau and E. M. Lifshitz, The Mechanics of Continua 

[in Russian], Gostekhizdat, 1954. 

18 August 19G8 Moscow 


